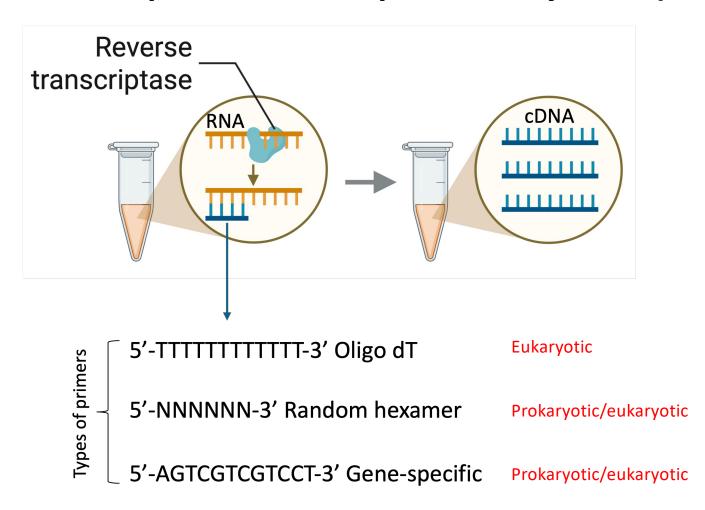


BIO 405L. Cellular and molecular biology laboratory

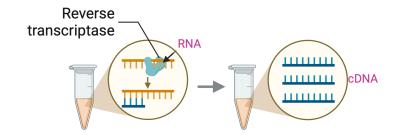

Reverse transcription,
real-time PCR
& differential gene
expression analysis

Hugo Castillo, Ph.D.

Gene expression studies start with RNA (mRNA) and PCR works exclusively with DNA, so...

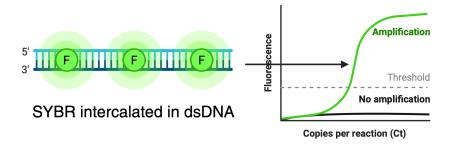
Reverse transcription and complementary DNA (cDNA)

Endpoint vs real-timePCR


Feature	Endpoint PCR	Real-time PCR (qPCR)			
Detection Time	After PCR reaction ends (post-PCR)	During the PCR reaction (real-time)			
Quantification	Qualitative/Semi-quantitative	Quantitative (accurate)			
Sensitivity	Less sensitive	Highly sensitive			
Detection Method	Gel electrophoresis	Fluorescence (dye or probe-based)			
Cost	Generally lower cost	More expensive due to advanced equipment			
Applications	Presence/absence of DNA, genotyping	Gene expression, viral load, precise DNA quantification			

cDNA synthesis

Reagent	Volume		
Template RNA (1 ug)	?		
Random hexamers	2 uL		
5X RT buffer	4 uL		
Reverse transcriptase	1 uL		
Water	Up to 20 uL		


Mix the RT and primers mix. Incubate at 25 C for 10 min Incubate at 42 C for 60 min Denature at 70 C for 10 min Incubate at 4 C forever

We pooled all samples from the same treatment (control, lunar or Martian) BEFORE cDNA synthesis.

Real-time or quantitative PCR

Component	Volume (µL) for One 50-µL Reaction		
2X SYBR® Green PCR Master Mix	25		
Forward Primer	Variable		
Reverse Primer	Variable		
Template	Variable		
Water	Variable		
Total	50		

SYBR green detection

Next week you will set up qPCR reactions to amplify the following genes:

betIBA

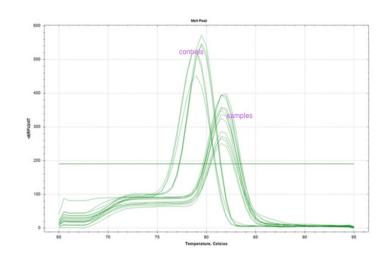
mscL

copA

cusA

soxS

16S rRNA

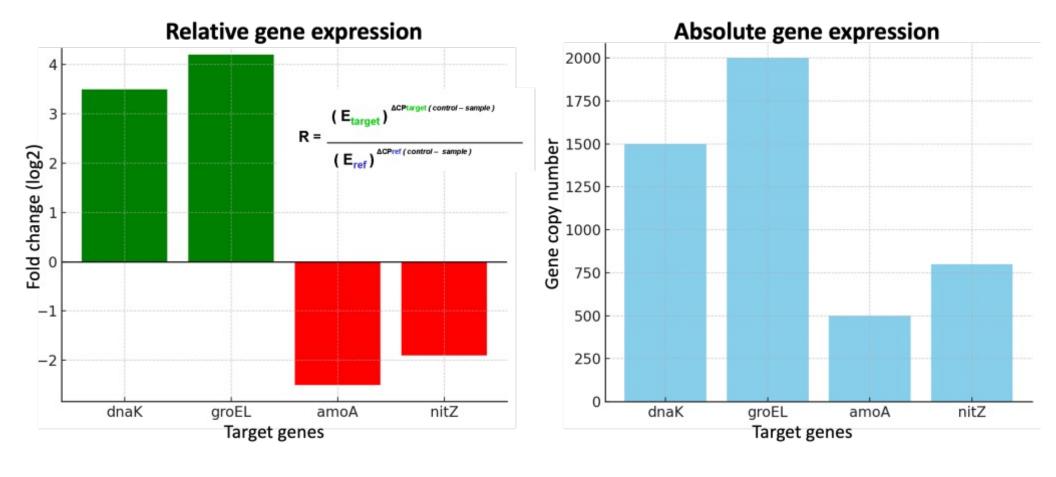

Find out their function for *E. coli*, then given their regulation think: Why does the regolith makes the cells express more/less of that each gene?

qPCR program

Typical output for real-time

What you'll get after this experiment...

		Ct value	
gapdH	Control	15.2	
	Control	15.4	
	Control	15.32	
	Control	15.26	
	Treatment	15.84	
	Treatment	15.84	
	Treatment	15.65	
	Treatment	15.55	
luxS	Control	28.52	
	Control	28.63	
	Control	28.45	
	Control	28.46	
	Treatment	27.21	
	Treatment	27.02	
	Treatment	27.41	
	Treatment	27.52	


Reference genes	gapdH
	<i>16S</i>
Target genes	luxS
	cdgI
	motA
	mqsR

How do we calculate differential gene expression with this data?

Relative gene expression

$$R = \frac{\left(E_{target}\right)^{\Delta CPtarget (control - sample)}}{\left(E_{ref}\right)^{\Delta CPref (control - sample)}}$$

	Gene	E	Treatments	Ct	Average	Delta	R
Target Reference	gapdH	1.9	G	20.042	19.935	-1.296	0.41
	gapdH		G	19.630			
	gapdH		G	20.132			
	gapdH		M	21.377	21.231		
	gapdH		M	21.446			
	gapdH		M	20.870			
	clpB	1.8	G	20.099	20.004	-2.161	0.22
	clpB		G	20.269			
	clpB		G	19.643			
	clpB		М	21.920	22.165		
	clpB		M	22.235			
	clpB		M	22.340			
						Ratio	0.55
						Log2	-0.86

